本篇文章根据胡老师讲解,针对微服务学习进行梳理交流学习。
微服务在维基百科中给出的定义是:
微服务的概念最早是在2014年由Martin Fowler和James Lewis共同提出,他们定义了微服务是由单一应用程序构成的小服务,拥有自己的进程与轻量化处理,服务依业务功能设计,以全自动的方式部署,与其他服务使用HTTP API通讯。同时,服务会使用最小规模的集中管理 (例如Docker)技术,服务可以用不同的编程语言与数据库等。
1. 单体应用
早些时候,各大互联网公司应用技术栈分为LAMP和MVC两派。其中LAMP指的是(Linux + Apache + MySQL + PHP),MVC指的是(Spring +iBatis/Hibernate + Tomcat)。无论是LAMP还是MVC,都是为单体应用架构设计的,其优点是学习成本低,开发上手快,测试、部署、运维也比较方便,甚至一个人就可以完成一个网站的开发与部署。
但是随着业务壮大,团队成员不断增加,单体应用架构出现问题,常见的问题如下:
- 部署效率低下。
- 团队协作开发的成本高。
- 系统高可用差。
- 线上发布慢。
1. 部署效率低下
单体应用代码越来越多,依赖资源越来越多时候,应用编译打包、部署测试的时间甚至需要10分钟以上。
2. 团队协作开发成本高
团队成员人数变多后,打包部署,测试阶段只要有一部分出现问题,就需要重新编译打包部署,然后重新预览测试,所有团队成员就要再次参与进来,效率很低,开发成本太高。
3. 系统高可用差
因为所有的功能开发最后都部署到同一个WAR包里,运行在同一个Tomcat进程之中,一旦某一功能涉及的代码或者资源有问题,那就会影响整个WAR包中部署的功能。比如我经常遇到的一个问题,某段代码不断在内存中创建大对象,并且没有回收,部署到线上运行一段时间后,就会造成JVM内存泄露,异常退出,那么部署在同一个JVM进程中的所有服务都不可用,后果十分严重。
4. 线上发布变慢
特别是对于Java应用来说,一旦代码膨胀,服务启动的时间就会变⻓,有些甚至超过10分钟以上,如果机器规模超过100台以上,假设每次发布的步⻓为10%,单次发布需要就需要100分钟之久。因此,急需一种方法能够将应用的不同模块的解耦,降低开发和部署成本。
2. 什么是服务化?什么是微服务?
用通俗的话来讲,服务化就是把传统的单机应用中通过JAR包依赖产生的本地方法调用,改造成通过RPC接口产生的远程方法调用。可⻅通过服务化,可以解决单体应用膨胀、团队开发耦合度高、协作效率低下的问题。
2014年,得益于以Docker为代表的容器化技术成熟和Devops兴起,服务化思想进一步发展,发展至如今的微服务。
3. 微服务与服务化有什么不同?
可以总结为以下四点:
- 服务拆分粒度更细。微服务可以说是更细维度的服务化,小到一个子模块,只要该模块依赖的资源与其他模块都没有关 系,那么就可以拆分为一个微服务。
- 服务独立部署。每个微服务都严格遵循独立打包部署的准则,互不影响。比如一台物理机上可以部署多个Docker实例,每 个Docker实例可以部署一个微服务的代码。
- 服务独立维护。每个微服务都可以交由一个小团队甚至个人来开发、测试、发布和运维,并对整个生命周期负责。
- 服务治理能力要求高。因为拆分为微服务之后,服务的数量变多,因此需要有统一的服务治理平台,来对各个服务进行管理。
4. 微服务架构组成
首先服务提供者(就是提供服务的一方)按照一定格式的服务描述,向注册中心注册服务,声明自己能够提供哪些服务以及服务的地址是什么,完成服务发布。
接下来服务消费者(就是调用服务的一方)请求注册中心,查询所需要调用服务的地址,然后以约定的通信协议向服务提供者发起请求,得到请求结果后再按照约定的协议解析结果。
而且在服务的调用过程中,服务的请求耗时、调用量以及成功率等指标都会被记录下来用作监控,调用经过的链路信息会被记录下来,用于故障定位和问题追踪。在这期间,如果调用失败,可以通过重试等服务治理手段来保证成功率。
服务调用主要依赖的基本组件:
服务描述
(服务调用首先要解决的问题就是服务如何对外描述。比如,你对外提供了一个服务,那么这个服务的服务名叫什么?调用这个服务需要提供哪些信息?调用这个服务返回的结果是什么格式的?该如何解析?这些就是服务描述要解决的问题。常用的服务描述方式包括 RESTful API、XML 配置以及 IDL 文件三种。)
注册中心
(有了服务的接口描述,下一步要解决的问题就是服务的发布和订阅,就是说你提供了一个服务,如何让外部想调用你的服务的人知道。这个时候就需要一个类似注册中心的角色,服务提供者将自己提供的服务以及地址登记到注册中心,服务消费者则从注册中心查询所需要调用的服务的地址,然后发起请求。
一般来讲,注册中心的工作流程是:
- 服务提供者在启动时,根据服务发布文件中配置的发布信息向注册中心注册自己的服务。
- 服务消费者在启动时,根据消费者配置文件中配置的服务信息向注册中心订阅自己所需要的服务。
- 注册中心返回服务提供者地址列表给服务消费者。
- 当服务提供者发生变化,比如有节点新增或者销毁,注册中心将变更通知给服务消费者。
)
服务框架
(通过注册中心,服务消费者就可以获取到服务提供者的地址,有了地址后就可以发起调用。但在发起调用之前你还需要解决以下几个问题。
- 服务通信采用什么协议?就是说服务提供者和服务消费者之间以什么样的协议进行网络通信,是采用四层 TCP、UDP 协议,还是采用七层 HTTP 协议,还是采用其他协议?
- 数据传输采用什么方式?就是说服务提供者和服务消费者之间的数据传输采用哪种方式,是同步还是异步,是在单连接上传输,还是多路复用。
- 数据压缩采用什么格式?通常数据传输都会对数据进行压缩,来减少网络传输的数据量,从而减少带宽消耗和网络传输时间,比如常见的 JSON 序列化、Java 对象序列化以及 Protobuf 序列化等。
)
服务监控
(一旦服务消费者与服务提供者之间能够正常发起服务调用,你就需要对调用情况进行监控,以了解服务是否正常。通常来讲,服务监控主要包括三个流程。
- 指标收集。就是要把每一次服务调用的请求耗时以及成功与否收集起来,并上传到集中的数据处理中心。
- 数据处理。有了每次调用的请求耗时以及成功与否等信息,就可以计算每秒服务请求量、平均耗时以及成功率等指标。
- 数据展示。数据收集起来,经过处理之后,还需要以友好的方式对外展示,才能发挥价值。通常都是将数据展示在 Dashboard 面板上,并且每隔 10s 等间隔自动刷新,用作业务监控和报警等。
)
服务追踪
(除了需要对服务调用情况进行监控之外,你还需要记录服务调用经过的每一层链路,以便进行问题追踪和故障定位。
服务追踪的工作原理大致如下:
- 服务消费者发起调用前,会在本地按照一定的规则生成一个 requestid,发起调用时,将 requestid 当作请求参数的一部分,传递给服务提供者。
- 服务提供者接收到请求后,记录下这次请求的 requestid,然后处理请求。如果服务提供者继续请求其他服务,会在本地再生成一个自己的 requestid,然后把这两个 requestid 都当作请求参数继续往下传递。
以此类推,通过这种层层往下传递的方式,一次请求,无论最后依赖多少次服务调用、经过多少服务节点,都可以通过最开始生成的 requestid 串联所有节点,从而达到服务追踪的目的。)
服务治理
(服务监控能够发现问题,服务追踪能够定位问题所在,而解决问题就得靠服务治理了。服务治理就是通过一系列的手段来保证在各种意外情况下,服务调用仍然能够正常进行。
在生产环境中,你应该经常会遇到下面几种状况。
- 单机故障。通常遇到单机故障,都是靠运维发现并重启服务或者从线上摘除故障节点。然而集群的规模越大,越是容易遇到单机故障,在机器规模超过一百台以上时,靠传统的人肉运维显然难以应对。而服务治理可以通过一定的策略,自动摘除故障节点,不需要人为干预,就能保证单机故障不会影响业务。
- 单 IDC 故障。你应该经常听说某某 App,因为施工挖断光缆导致大批量用户无法使用的严重故障。而服务治理可以通过自动切换故障 IDC 的流量到其他正常 IDC,可以避免因为单 IDC 故障引起的大批量业务受影响。
- 依赖服务不可用。比如你的服务依赖依赖了另一个服务,当另一个服务出现问题时,会拖慢甚至拖垮你的服务。而服务治理可以通过限流,在依赖服务异常的情况下,一段时期内停止发起调用而直接返回。这样一方面保证了服务消费者能够不被拖垮,另一方面也给服务提供者减少压力,使其能够尽快恢复。
上面是三种最常见的需要引入服务治理的场景,当然还有一些其他服务治理的手段比如自动扩缩容,可以用来解决服务的容量问题。)